**V****ALUATION
PRINCIPLES**

Annuities, Perpetuities, and Compounding
An *annuity* consists of equal payments in equal time,
as opposed to a mixed and varied stream of cash flows. This unique character of annuities makes it possible
to compute infinite numbers of such payments in one calculation, whereas mixed streams require a separate
calculation for each payment to determine the present or future value of the entire stream.

The mathematics of determining the single factor for the
future values of a series of equal payments is the sum of the individual future value factors. For example,
the single factor to determine five annual equal investments of $500 *each year* compounding at 8%
annually would be computed as follows:

1+(1.08)+(1.08)^2+(1.08)^3+(1.08)^4= 5.8666, multiplied by
$500, equals $2933.30, or the total value

This calculation assumes that the first payment is received
at the *end* of the first year and the last payment is received on the last day of the last year.
This type of annuity is called an *ordinary annuity*.If the first payment was received on the *first
day* of the first year there would be one more compounding period:

(1.08)+(1.08)^2+(1.08)^3+(1.08)^4+(1.08)^5 =6.3359, multiplied
by $500, equals $3167.95

This type of an annuity is called an *annuity due*.
As you can see, the difference in the final sum is significant between the two types of annuities. While
most investments do not produce cash until the end of a given period, there are several investment, such
as rents on an apartment building, where the cash flow comes at the beginning of the period, and which
can significantly impact total future value.

On the present value side, all true interest lending, requiring
equal payments, is computed by using the present value of an ordinary annuity. Solving for the equal payment
on a mortage or a loan requires the same basic calculation, except we would now use present value of an
annuity computations. Lets assume a 12% annual rate on a 6 month, equal payment loan for $1000. The present
value factor is the sum of the individual present value factors as follows:

(1/(1.02))+(1/(1.02)^2)+(1/(1.02)^3)+(1/(1.02)^4)+(1/(1.02)^5)
+(1/(1.02)^6)= 5.60143.

We then divide that factor into the amount of the loan to
get the equal payments which will pay all the interest and all the principal in 6 equal payments:

$1000/5.60143= $178.53

Thus we see the importance of the annuity concept in all
equal payment lending transactions.

The concept of perpetuity is a related idea having to do
with the amount of money necessary to produce an equal flow of cash to infinity. For example, suppose
one planned to provide a scholarship to a student of $10,000 forever. How much money would have to be
under investment at 5%, for example, to provide that scholarship, without ever touching the principal?

The computation is straightforward: the annuity divided by
the rate of return equals the principal required. For our example above, the calculation would be:

$10,000/.05= $200,000.

Therefore if $200,000 were invested in government bonds at
5%, an annual income of $10,000 would be provided into perpetuity and the principal would remain unchanged.